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J. Phys. A: Math. Gen. 19 (1986) L709-L713. Printed in Great Britain 

LETTER TO THE EDITOR 

The exponential cosine screened Coulomb potential in the 
framework of algebraic perturbation theoryt 

V Fack, H De MeyerS and G Vanden Berghe 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit te Gent, Krijgslaan 28149, 
B9000 Gent, Belgium 

Received 7 May 1986 

Abstract. High accuracy approximations for the bound state energies of the exponential 
cosine screened Coulomb potential are obtained by means of algebraic perturbation 
calculations. 

In a previous letter (De Meyer er a1 1985), we have shown how the bound state energies 
of the screened Coulomb potential 

V( r )  = - ( I /  r) e-Ar cos(pr) (1) 

are approximated by the application of a scaling variational principle. In contrast to 
the previous treatment by Roy and Choudhury (1985), we have been able to avoid 
any truncation of the series development of the potential in powers of the screening 
parameters A and p. Indeed, from a dynamical group approach to this problem we 
have established a scaled functional fi( E, e), where 6 is a scaling parameter of which 
the value attributed should in principle not affect the energy eigenvalue E. 

We introduce the SO(2, 1) group states Ilmn) labelled by the orbital angular 
momentum 1, its projection m and a positive integer n which is related to the radial 
quantum number n, by n = n,+ I +  1. Then the matrix elements of fi(E, 6) with respect 
to this group basis are given by(De Meyer er a1 1985) 

( Imn’lil( E, e ) [  Imn) 

= ( / m n l i l ( ~ ,  e ) l fmn’)  

+ $ ( e e + 2 E  e-e)8nrn+l-Re ;ipe-e)n’-n 

x ,F1(l+ 1 - n, -n - 1; 1 + n’- n; :(A + i p ) ,  e-,’) ]} ( n ’ a n ) .  (2) 

t Editor’s note. Due to an error, the wrong text was printed earlier (De Meyer H, Fack V and Vanden 
Berghe G 1986 1. Phys. A: Math. Gen. 19 L231) and this reference should be ignored. The following is the 
correct version. 
$ Senior Research Associate at the National Scientific Research Fund (Belgium). 
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The scaled variational method consists in minimising with respect to 6 the E value 
obtained by setting the diagonal element (lmnIa(E, 6)llmn) equal to zero. The minimal 
E value is clearly an approximation to the bound state energy En,/. 

Also, since the off-diagonal matrix elements of @E,  6) can be expressed in closed 
form, we shall treat them here as perturbation terms and we shall perform an algebraic 
perturbation expansion. Let us first notice that all matrix elements (2) are linear with 
respect to E. Hence we introduce the shorthand notation 

(lmn + i@(E,  6)llmn) = an+i,n + bn+i,nE ( ia  1 + 1 -  n) (3)  

whereby for fixed n, 1 and m the coefficients a and b are easily obtained from (2). 
Since 6 ( E ,  6 )  leaves the 1 and m value invariant we develop its eigenstate in 
terms of the SO(2,l)  group states as follows: 

m 

where the c coefficients remain to be determined. Substituting (4) into the eigenvalue 
equation i=l(En,l, 6)l$n,l,m) = 0 we obtain 

m o o  

For j = n we solve the resulting secular equation with respect to E , ! ,  whereas for j # n 
we solve that equation with respect to c,. This yields 

X i # ,  ajici + X i + ,  bjiciEn 
a$ + b,En,I (if n). c.  = - (7) 

These expressions have the appropriate form to establish an iteration algorithm for 
the calculation of En,l. More precisely, denoting by E::) and cjk' the kth order 
approximations to En,/ and cj respectively, we prescribe the following Gauss-Seidel 
iteration scheme (Femandez et a1 1985, Fack er a1 1986): 

C ( k )  = 1 ( k b  1 )  

where the initial c values are determined by cia)= Sin .  
Although the scheme (S), when it is convergent, theoretically produces the correct 

eigenvalue E,,l in the limit k + m ,  we have to introduce in practice one additional 
constraint. From the closed form expression (2) we recognise that 6, = 0 if ) i  -j la 2, 
but a similar restriction upon the aV coefficients does not hold. Hence, for calculational 
purposes, since it is impossible to evaluate to all orders k an infinity of c jk)  coefficients, 
we have built in a cutoff on the aU coefficients such that the matrix of these coefficients 
reduces to a band matrix. Setting, in particular, aV = b, = 0 for all i # j, we clearly 
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Table 1. Energy eigenvalues in atomic units for different values of the screening parameter 
A of the ECSC potential, obtained from a five-band matrix (F) and a nine-band matrix 
(N). Under (D) are listed the corresponding eigenvalues obtained by the scaling variational 
method, whereas under (0) are given the values of exp( -e), where 0 is the tilting parameter. 

(n. 1) 0.01 0.02 0.03 0.04 

-0.490 0010 
-0.490 0010 
-0.490 0010 

1 .000 0623 

-0.480 0078 
-0.480 0078 
-0.480 0078 

1.000 1360 

-0.470 0260 
-0.470 0260 
-0.470 0260 

1.000 1969 

-0.460 0609 
-0.460 0609 
-0.460 0609 

1 .OOO 2660 

10 D 
F 
N 
0 

20 D 
F 
N 
0 

-0.115 0135 
-0.115 0135 
-0.115 0135 

2.000 3912 

-0.105 1036 
-0.105 1036 
-0.105 1036 

2.001 6340 

-0.095 3366 
-0.095 3366 
-0.095 3366 

2.004 8297 

-0.085 7690 
-0.085 7690 
-0.085 7690 

2.01 1 3276 

21 D 
F 
N 
0 

-0.115 0097 
-0.115 0097 
-0.1 15 0097 

2.000 2674 

-0.105 0746 
-0.105 0746 
-0.105 0746 

2.001 1639 

-0.095 2434 
-0.095 2436 
-0.095 2436 

2.004 1965 

-0.085 5583 
-0.085 5591 
-0.085 5591 

2.008 0199 

30 D 
F 
N 
0 

-0.045 6191 
-0.045 6191 
-0.045 6191 

3.002 9758 

-0.036 0256 
-0.036 0251 
-0.036 0251 

3.023 4643 

-0.027 0334 
-0.027 0283 
-0.027 0283 

3.074 4943 

-0.018 8478 
-0.018 8226 
-0.018 8228 

3.170 6808 

31 D 
F 
N 
0 

-0.045 6110 
-0.045 61 10 
-0.045 6110 

3.002 6059 

-0.035 9677 
-0.035 9676 
-0.035 9676 

3.020 6535 

-0.026 8553 
-0.026 8544 
-0.026 8545 

3.065 6588 

-0.018 4580 
-0.018 4530 
-0.018 4532 

3.1500355 

32 D 
F 
N 
0 

-0.045 5948 
-0.045 5948 
-0.045 5948 

3.001 8480 

-0.035 8503 
-0.035 8507 
-0.035 8507 

3.015 0901 

-0.026 4933 
-0.026 4969 
-0.026 4970 

3.21 1 9346 

-0.017 6648 
-0.017 6819 
-0.017 6821 

3.211 9346 

40 D 
F 
N 
0 

-0.021 4377 
-0.021 4375 
-0.021 4375 

4.022 3166 

-0.012 5811 
-0.012 5716 
-0.012 5717 

4.160 6630 

-0.005 3597 
-0.005 2692 
-0.005 2701 

4.576 1110 

41 D 
F 
N 
0 

-0.021 4245 
-0.021 4244 
-0.021 4244 

4.020 0457 

-0.012 4915 
-0.012 4856 
-0.012 4857 

4.150 2941 

-0.005 0887 
-0.005 0321 
-0.005 0327 

4.530 7707 

42 D 
F 
N 
0 

-0.021 3980 
-0.021 3980 
-0.021 3980 

4.017 7774 

-0.012 3105 
-0.012 3102 
-0.012 3102 

4.128 3230 

-0.004 5424 
-0.004 5390 
-0.004 5393 

4.443 9450 

43 D 
F 
N 
0 

-0.021 3578 
-0.021 3578 
-0.021 3578 

4.012 2692 

-0.012 0347 
-0.012 0382 
-0.012 0382 

4.095 7429 

-0.003 7143 
-0.003 7480 
-0.003 7481 

4.323 9350 
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Table 1. (continued) 

(n ,  1 )  0.06 0.08 0.1 0.2 

10 D -0.440 2004 -0.420 4636 -0.400 8839 -0.306 2964 
F -0.440 2005 -0.420 4639 -0.400 8447 -0.306 3338 
N -0.440 2005 -0.420 4639 -0.400 8448 -0.306 3340 

1.01 1 3295 0 1.OOO 31 11 1 .O00 8965 1.001 7150 

20 D -0.067 4217 -0.050 3922 -0.034 9677 
F -0.067 4209 -0.050 3858 -0.034 9401 
N -0.067 4210 -0.050 3862 -0.034 9410 
0 2.036 2238 2.080 9071 2.155 3547 

21 D -0.066 7697 -0.048 9610 -0.032 3498 
F -0.066 7774 -0.048 9968 -0.032 4682 
N -0.066 7774 -0.048 9970 -0.032 4687 
0 2.026 5355 2.058 8019 2.112 2840 

30 D -0.005 7194 
F -0.005 4575 
N -0.005 4615 
0 3.679 4460 

31 D -0.004 5278 
F -0.004 4743 
N -0.004 4748 
0 3.570 2375 

32 D -0.002 1307 
F -0.002 3151 
N -0.002 3137 
0 3.388 3419 

reconvert the iteration scheme into a single step formula for E , ,  which is in complete 
agreement with the scaled variational prescription (De Meyer et all985). By extending 
the matrix to a non-diagonal band matrix we can choose the value of the scaling 
parameter 8 such that the rate of convergence of the iteration calculation is as high 
as possible. We have verified that the convergence is assured and is of nearly maximal 
rate if we take for 8 the value obtained from the variational treatment, i.e. the value 
which minimises E::] considered as a function of 8. Next, for certain typical values 
of the screening parameters, we have repeatedly carried out the iteration calculations 
based upon (10) for a five- and nine-band matrix, respectively. 

In table 1 our results for some equal values of the two screening parameters are 
listed. Comparing them with our previous results (De Meyer et a1 1985) we notice 
that for small values of A = p and for the lowest energy levels, there is almost complete 
agreement already. With increasing A or by considering the higher energy levels, the 
newly obtained eigenvalues correct the previous ones. For the particular cases treated 
here, the correction takes place from the fifth decimal place onwards. Furthermore, 
in the extension from the five-band matrix to the nine-band matrix the first five decimals 
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remain unaffected. It is clear that by further extending the coefficient matrix, we can 
generate approximations by the algebraic perturbation technique which are even more 
accurate. 
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